31 Urban air mobility network Defines stations for vertical take-offs and landings with connecting routes and capacities for, e. g., parking, charging, or maintenance. This network is then used by predefined VTOL vehicles. Public transport network and schedule Defines public transport stops for multiple modes, e. g., bus, subway, tram, or rail. The schedule allocates stops to specific modes and provides their departure times. Facilities Provides locations of buildings and their types, e. g., households, supermarkets, workplaces, or entertainment. Each facility can provide opening times to which agents have to adhere. Demographics and activity plans A study area’s population builds the foundation for the stock of agents whose transportation demand is being simulated. Each agent provides a plan of daily activities, e. g., working, together with desired starting times. Street network Provides the road infrastructure of a study area, which will be utilised by agents to fulfill their transport demand using, e. g., private cars or public transport. Congestion is being modelled, since the network has limited capacity. Cruise speed vs. range vs. passenger capacity (published data) ] 1 - h m k [ d e e p s e s i u r C 350 300 250 200 150 100 50 0 27 19 20 12 22 31 28 10 6 15 39 32 35 33 11 3 36 30 38 100 200 300 400 500 Range [km] 600 700 800 900 PAX: Energy Supply: 12 4 5 Electric Hybrid-Electric Fuel Cruise and VTOL Capability: Regular number: Fixed-Wing Cruise Bold number: Rotory-Wing Cruise VTOL CTOL / STOL (3) AeroMobil 4.0 (AeroMobil, 2017) (6) Airbus E-Fan 2.0 (Airbus, 2016) (10) Aurora eVTOL (Aurora Flight Sciences, 2017) (11) Carplane (Carplane GmbH, 2016) (12) Carter/Mooney SR/C E-Air Taxi (Carter Aviation Technologies, 2017) (15) EHANG 184 (EHANG, 2017) (19) Joby S2 (Stoll, 2014) (20) Joby S4 (Stoll, 2015) (22) Lilium Jet (Lilium GmbH, 2017) (27) NASA LEAPTech (Stoll, 2014) (30) Neva AirQuadOne (Neva Aerospace, 2017) (31) ONERA Ampere (Hermetz, 2016) (32) PAL-V Liberty (PAL-V International, 2017) (33) Samson Switchblade (Samson Motorworks, 2012) (35) Terrafugia TF-X (Terrafugia, 2017) (36) Terrafugia Transition (Terrafugia, 2017) (38) Volocopter 2X (Volocopter GmbH, 2017) (39) Workhorse SureFly (Workhorse Group Inc., 2017) Bausteine der urbanen Luftmobilitätsmodellierung Für ein umfassendes Bild von urbanen Verkehrs- systemen müssen unterschiedliche Datenebenen miteinander kombiniert werden. Nur dann können Verkehrsauswirkungen von neuartigen Transport- konzepten analysiert werden. Elements of urban air mobility modelling For a comprehensive picture of urban traffi c systems, different data levels have to be combined into one transport model. Only then is it possible to analyse the effects of new transport concepts effectively. Zusammenstellung veröffentlichter Daten von Luftfahrzeugen für „Urban Air Mobility“ Das Diagramm verdeutlicht die Heterogenität der Ziel- setzungen für diese neue Flugzeugklasse. Größere Reichweiten und höhere Reisegeschwindigkeiten, kombiniert mit VTOL, führen zudem zu höherer System- komplexität. Compiled published data of air vehicles for urban air mobility The diagram illustrates the heterogeneity of the objectives for this new aircraft class. Longer ranges and higher cruising speeds, combined with VTOL, also lead to higher system complexity. Dr. Kay Plötner Head of Economics and Transportation, Lead Operations Dr. Jochen Kaiser Head of Visionary Aircraft Concepts Dass die Luftfahrt ein kommerzielles Produkt für urbane Mobilität in der nächsten Dekade anbieten wird, ist aus unserer Sicht sehr wahrscheinlich – ob als Marktnische oder als relevanten neuen Transportmodus, ist noch schwer abzuschätzen. Die Transportleistungen für Metropolen sowie die Kosten für einen innerstädtischen Lufttransport müssen valide eingeschätzt und auf die Anforderungen an Sicherheit, Lärm und Umweltverträglichkeit abgestimmt werden. Am Bauhaus Luftfahrt werden durch die interdisziplinäre Arbeit technologische, regulatorische wie auch sozioökonomische Aspekte untersucht. Nur so können der mögliche Mehrwert durch „Urban Air Mobility“ für Gesellschaft und Städte aufgezeigt und eine Akzeptanz erreicht werden. From our perspective, aviation will offer a commercial product for urban mobility in cities in the next decade – whether as a market niche or as a relevant new mode of transport, is still diffi cult to estimate. Relevant transport services for metropolises and the costs of inner-city air transport must be validly assessed and harmonised with requirements for aircraft safety, noise, and environmental impact. The interdisciplinary approach at Bauhaus Luftfahrt will bring technological, regulatory, and socio-economic aspects together. Only in this way can the potential added value of urban air mobility for society and cities be demonstrated and an acceptance of air traffi c in the urban environment be achieved.